Equity per Share Growth
((Assets - liabilities) / common shares outstanding)
An algorithm that trades stocks with the highest percentages of equity per share growth weekly.
Starting capital: $10,000
Max leverage: 1
Jan 2, 2006 - Sep 1, 2020
Returns: 946.69%
Drawdown: -65.15%
Drawdown: -65.15%
Benchmark (S&P 500): 276.95%
import quantopian.algorithm as algo from quantopian.pipeline import Pipeline from quantopian.pipeline.filters import Q3000US from quantopian.pipeline.data.morningstar import Fundamentals as ms import quantopian.optimize as opt import numpy as np import pandas as pd def initialize(context): context.FINE_FILTER = 5 context.stock_weights = pd.Series() algo.attach_pipeline(make_pipeline(context), 'pipeline') schedule_function( stocks_weights, date_rules.week_start(), time_rules.market_open() ) schedule_function( trade, date_rules.week_start(), time_rules.market_open() ) def make_pipeline(context): univ = Q3000US() factor = ms.equity_per_share_growth.latest.rank(mask=univ, ascending=False) top = factor.top(context.FINE_FILTER) pipe = Pipeline( columns={'top': top}, screen=univ) return pipe def stocks_weights(context, data): df = algo.pipeline_output('pipeline') rule = 'top' stocks_to_hold = df.query(rule).index stock_weight = 1.0 / context.FINE_FILTER context.stocks_weights = pd.Series(index=stocks_to_hold, data=stock_weight) def trade(context, data): target_weights = opt.TargetWeights(context.stocks_weights) constraints = [] constraints.append(opt.MaxGrossExposure(1.0)) order_optimal_portfolio( objective=target_weights, constraints=constraints )
Statements on this website are for informational purposes only and do
not constitute a recommendation or advice by the website owner to
transact any security or market instrument. All trading activity
involves known and unknown risk. Historical data presented is not always
indicative of future performance.